
INT. J. COMPUTER INTEGRATED MANUFACTURING, 1991, VOL. 4, NO. 2, 105-113

ALPS - A Language for Process Specification

Bryan A. Catron
Steven R. Ray

Factory Automation Systems Division
National Institute of Standards and Technology

Abstract

This paper describes research identifying information models to facilitate process specification and

to transfer this information to process control. A conceptual schema is introduced as a means to

bridge the gap between process planning requirements and production control requirements. The

result is a process specification language based on directed graph notation which allows full

specification of parallel activities, event synchronization, alternative processes, resource

management, and task decomposition.

I. Introduction

A crucial step in successful automated manufacturing is the smooth transfer of information

between systems in the manufacturing environment. Current research at the Automated

Manufacturing Research Facility (AMRF) of the National Institute of Standards and Technology

(formerly the National Bureau of Standards) is addressing integration issues for streamlined data

integration to support flexible discrete manufacturing.

The AMRF was established in 1981 to serve as a test bed facility to support research in

measurement techniques and computer interface standards that are required for automated

machining of parts in small lot sizes. The primary thrust of the project was to establish clear

interface specifications and support modular structures to allow plug-compatibility between

systems. This plug-compatibility allows both a flexible manufacturing environment and offers the

capability of incremental automation in existing facilities.

The AMRF is built around the concept of hierarchical control, where high level commands are

decomposed into sequences of simpler commands at the next lower level in the hierarchy. The

simpler commands are in turn decomposed at yet lower levels. Well-defined protocols have been

established to allow command and status information to flow upwards and downwards in the

hierarchy. The bulk of data transfer (such as process plans and part models) occurs directly with a

distributed data administration system. A mechanism has been implemented to allow any

controller in the AMRF to request or store information in a generic way, regardless of which



2

database is being used to hold that information. The adoption of such an architecture avoids many

potential information bottlenecks. Further, by adopting a hierarchical approach, the complexity of

a task is reduced to a manageable level for each controller in the hierarchy. More details on the

AMRF can be found in (Simpson 1982, Furlani 1983, Hocken 1983, McLean 1983, McLean 1985,

Nanzetta 1984).

The long-term goal of process planning research in the AMRF is to develop the capabilities to

allow real-time, reactive planning. A crucial step to enable real-time planning is the definition of

an architecture which will allow the smooth transfer of information among all systems in the

manufacturing environment. This architecture is under development within the AMRF, and is

based upon a set of conceptual information models implemented as object-oriented databases (Ray

1989).

There are two schemas under development which are relevant to this paper: the Plan Formulation

schema and the ALPS schema. Further details on the Plan Formulation schema and its relationship

to the ALPS schema can be found in (Ray 1989.) Among other things, the Plan Formulation

schema describes the relationships between planning goals, processes to achieve these goals, and

resources required by the processes. The Plan Formulation schema is specifically designed to

address the information needs during process planning. The schema is not particularly suitable for

use by downstream systems, such as schedulers, resource managers, and execution systems. A

scheduling system needs information such as the sequencing requirements of processes, trade-offs

between alternative approaches, resource commitments, costs, and delivery times. For example, a

scheduler is not interested specifically in why certain processes are required, but in just how long

a process takes, how much it costs, and what resources are needed. Furthermore, the tasks

identified in the Plan Formulation schema are not stratified according to a control hierarchy. Thus,

the data is not in a form convenient to other systems. There is a need to re-express this data in terms

which are compatible with the rest of the manufacturing environment. This re-expression is

specified by the ALPS schema. This paper presents a language specification (ALPS) and the

underlying schema which meet the above communication needs.

The paper is divided into eight sections. Section I describes the AMRF research environment and

the goals of process planning research in the AMRF, which motivated much of the work presented

in this paper. Section II explains the need for a generic process specification language in

manufacturing. Section III briefly identifies related work. Section IV defines and discusses ALPS

(A Language for Process Specification), including definitions of all node classes and the

underlying conceptual schema, which is formally defined in the Appendix. Section V offers

conclusions and a discussion of future research directions.



3

II. The Need for ALPS

ALPS is used as an interface between process planning and production control, and internally

between production control processes (Figure 1). In the AMRF, the design of flexible controllers

calls for them to be completely driven by process plans. This allows "re-programming" a controller

by selecting a new process plan. For this type of automated, data-driven system, a complete

description of processing is required in order to manufacture the part. A process specification

language can be used to fully communicate manufacturing process steps.

A process specification language should communicate the processing information but not restrict

downstream decision making. Process plans should allow the decoupling of various sub-tasks

involved in manufacturing data preparation and production, e.g. specification of the task is

decoupled from the scheduling policies applied, and resource management is decoupled from

manufacturing control. Furthermore, each step in the preparation of manufacturing data (e.g.

design, planning, production) must be decoupled from other steps.

Process specification languages (PSLs) have conflicting goals of simplicity, explicitness, and

completeness of information. Simplicity is manifest in clarity, brevity, and the understandability

of the language. Explicitness, however, requires all pertinent information to be communicated

without hiding necessary information. Processing information should be explicit versus implicit in

order for computers to properly understand it. A PSL must also provide for the complete

specification of processing steps without omitting necessary information.

In order to satisfy the conflicting goals of simplicity, explicitness, and completeness, various

means of abstraction should be supported, specifically hierarchical and macro abstraction.

Hierarchical abstraction allows the clustering of processing steps into a single step at a higher

Process
Plans Scheduler Dispatcher Execution

Control
Process

Log

Resource
Monitor

Figure 1
Data flow between components of a factory controller. Orders, process plans, and resource
information communicate with scheduling. The Dispatcher resolves short term resource
contention. The Execution control sequences operations and updates the process log and
Resource Monitor. Thick vertical lines indicate ALPS interfaces.

Orders



4

control level. Macro abstraction allows for groups of processing steps to be clustered into a single

step at the same control level. Thus, simplicity is maintained by limiting the explicit information

at each level of control.

While the full specification of resources, tasks, and processing information should be possible, it

should not be mandatory. An "intelligent" system may be able to calculate the necessary

information while a more limited system may require the full specification. For example, an

intelligent system could search the process plan for resource requirements, eliminating the need for

explicit resource allocation nodes to be present in the plan.

For full specification of processing, a PSL must address the following aspects:

1) Processing precedence - determine the sequence of tasks. This is the basic capability

of every PSL.

2) Alternative sequences - express different task sequences which provide the same

result. Must also provide a means for a scheduler to determine which sequence

is currently optimal. The decision should be deferred until scheduling or

manufacturing time.

3) Parallel actions - explicitly show how multiple task sequences within a plan can be

performed at the same time. It is assumed that separate plans can be executed in

parallel as separate jobs.

4) Synchronization - provide for synchronization between multiple parallel task

sequences in a plan (as in #3) and between multiple plans.

5) Resource monitoring - provide means for collecting and updating statistics for

resource availability and utilization to support scheduling and resource

allocation.

6) Post processing - provide a processing log to detail actual processing sequences used

in manufacturing a part. A process specification language should have some

means of capturing actual processing data to allow error tracing and to monitor

performance. This aspect is critical for traceability, quality control and feedback

control.

7) Extensibility - support extensibility by not constraining the user to a fixed

functionality. Users must be able to customize process plans to support their

facility.



5

Process specification languages must also support various degrees of implementation to allow

incremental upgrading of systems. For example, a basic system can simply express the task

precedence without alternative and parallel tasks. More sophisticated systems can express

alternative and parallel tasks to allow for more productive run-time scheduling and selection of

alternative tasks based on real-time information. Advanced implementations might involve

resource management and monitoring of resources during processing to provide run-time statistics

about machine utilization, tool wear, and inventory. This information can then be used to make

better scheduling decisions.

Many languages exist to fulfill some of these requirements. However, in order to overcome

perceived shortcomings with existing systems, a new process specification language was

developed for use within the AMRF. This new language has been termed ALPS for "A Language

for Process Specification".

III. Prior Work

Previous efforts in process specification provided a great deal of input to the ALPS project. Many

languages are targeted for a particular application such as robotic assembly (Maimon 1986)(Adler

1986)(Homem 1986). These languages usually produce optimized solutions to a specific problem.

The ALPS project aims to address a large application domain of manufacturing control and, while

optimization is desirable in some cases, it is not an overriding concern.

Similarly, simulation languages (Taha 1988)(Pristker 1984)(Bobillier 1976) deal with the domain

of process simulation which possesses many aspects of process specification but lacks the ability

to carry over to a generalized control environment. Many of the ALPS split node variations and

attributes are derived from simulation languages.

Many PSLs use directed graphs or AND/OR graphs as a means for communicating information

(Homem 1986)(Passler 1982). AND/OR graphs provide the basis for the ALPS directed graphs but

are extended to provide iteration, richer branching behavior, as well as enumerating different node

classes.

Many PSLs (Rembold 1986)(Costa 1984) are based on existing programming languages like LISP,

Pascal, or Ada. The difficultly arises because process engineers are generally not computer

scientists, nor should they be required to be. This has spawned efforts to present the language with

graphical or template-based front-end editors to facilitate program entry. The specification of the

ALPS language uses a graphical front-end to an identical conceptual schema. There is no need for

the "background" language because the front-end language gives full power.



6

ALPS provides a general vehicle for the implementation of a particular language. It is not intended

to be an implementation language specification, but rather a conceptual facilitator of process

specification. Although a language syntax has been developed and implemented as part of the

research, the implemented language is not the primary thrust of the project.

IV. ALPS Structure

Directed Graph Notation

The primary purpose of a process specification language is to specify temporal relationships

between process tasks. The ALPS language is based upon a directed graph notation to indicate the

temporal relationship between nodes. The directed graph in Figure 2 shows that node A precedes

node B in the graph and indicates that task A must complete prior to beginning task B. Many efforts

in production control systems and simulation systems use directed graphs as their basis because it

provides the required attributes of expression: simplicity, clarity, basic precedence, alternative

sequences, parallelism, and abstraction.

Several benefits are obtained by using the directed graph notation: 1) the process plan is easily

displayed for graphical editors and status-tracing tools, 2) parallel processing is explicitly shown,

and 3) graphs are easily traversed by computer controllers. Sequencing processing tasks consists

A B

Figure 2
Simple directed graph indicating precedence relationship between node A and B.



7

of connecting nodes in order. Parallel and alternative sequences are shown by nodes which have

multiple successors. An example of a directed graph representation is shown in Figure 3.

The following definitions are relevant.

Node -- a type of entity located at every vertex of a directed graph.

Arc -- a connector between two nodes denoting a temporal precedence relationship

between nodes.

Path -- a sequence of one or more consecutive nodes and arcs.

Execution Path -- actual path selected for execution (when alternatives exist).

Task -- an elementary piece of work decomposed from a job.

Job -- one or more sequences of tasks to produce a change of state.

Target Controller -- control system which will execute a task.

Subordinate Controller -- control system at the next lower level in the control hierarchy.

A controller decomposes jobs into simpler jobs which are given to subordinate

controllers.

Supervisor Controller -- control system at the next higher level in the control hierarchy.

Jobs are received from the supervisor controller.

Subordinate Plan -- a process plan at a subordinate level.

AND

OR Join

A

B C D

E F

G H

IJoin

Figure 3
An example of the directed graph notation used for the process planning specification. Note
the parallel activity (shown by the AND node) and the alternative paths (shown by the OR
node). Nodes A-I indicate processing tasks to be performed. It should also be noted that each
node in the figure has many attributes not shown here.



8

Parallel Tasks -- a group of tasks that may be done at the same time such as a job in a

multi-tasking operating system.

Control hierarchy -- An arbitrary number of control levels that can be used to

decompose work into more and more specific jobs (e.g. highest level controller

might be a factory controller, lowest level controller might be an equipment

controller). Higher levels of controllers have increasing abstraction and

decreasing specialization.

Node Classes

The ALPS specification is built around a directed graph structure and is used to define the

processing sequencing and specifications. There are seven major classes of graph nodes:

termination, task, split, join, synchronization, resource, and information. The general structure of

the nodes includes the following system defined attributes: 1) node identifier -- a required unique

(for this plan) number to identify the node, 2) node name -- an optional attribute for a node

commentary string, 3) node type -- a required attribute specifying the node class, 4) previous nodes

(if applicable) -- required attribute containing the predecessor nodes in the graph, and 5) next nodes

(if applicable) -- required attribute containing the successor nodes in the graph. Most nodes have

other attributes specific to the node class. Full definitions and explanations of the nodes and node

classes are outlined in the following sections.

Termination Nodes.

The START and END termination nodes delimit the beginning and end of the graph

structure respectively. The START node is a unique node indicating the starting point of

processing for this plan. The END node is a unique node and marks the last node in the

graph. The termination nodes are place-holder nodes and do not contain processing

information.

Task Nodes.

Two sub-classes of task node are defined: primitive tasks and decomposable tasks. A

PRIMITIVE task node specifies activities which are directly executable by the target

controller. For example, executing an NC code program might be a PRIMITIVE node for

an equipment controller. Most PRIMITIVE task node attributes are user-defined for the

particular task. Typical attributes would include tool identifier, speed, feed rate, resource

utilization information, etc.

A decomposable task node consists of either a COMPLEX or MACRO task node.

COMPLEX decomposable task nodes specify a process plan for decomposition and

execution by a subordinate controller. This is the hierarchical abstraction mentioned in



9

Section IV. The specified plan is then read in and executed by the subordinate system. A

MACRO decomposable task node specifies another process plan (ALPS file) as the

collection of nodes to be processed in the place of this node. Such plans can themselves

contain MACRO nodes. A MACRO decomposable task node specifies a process plan

which is further decomposed by the same target controller. MACROs are analogous to

subroutines which cluster multiple related statements into a single abstract statement. This

is the macro abstraction mentioned in Section IV. Typical attributes for MACRO and

COMPLEX task nodes are parameters for the specified plans. These attributes are user-

defined.

Split Nodes.

Split nodes (branching nodes) allow the specification of different processing paths.

Alternative paths, concurrent paths, and iterative paths all use the split node format. The

two subclasses of split nodes are: PREDICATED and PARAMETERIZED. The split

subclasses are a super-set of "AND" and "OR" nodes of generalized and/or graphs.

PREDICATED split nodes allow the selection of one or more paths based on Boolean

predicate functions associated with each outgoing path. All predicates which evaluate to

"true" (at run-time) are eligible to have their path followed. An M-number (named after the

SLAM M-number (Pristker 1984)) is specified to determine the maximum number of paths

which may be taken from the node. There is a practical minimum of one path taken. The

ELSE clause is taken in case no predicates evaluate to true. A predicated split node could

be used to select between alternative paths based on some simple predicate (e.g.

surface_finish > x).

PARAMETERIZED split nodes allow the selection of one or more paths by specifying

parameters associated with each outgoing path. A local scheduler uses the parameters and

values to decide which path(s) to take. An M-number is specified to determine the actual

number of paths to take (e.g. take the three best paths). It should be noted that the M-

number has a subtle difference in the parameterized and the predicated split nodes. This is

due to the nature of the nodes and should not be viewed as an inconsistency. A

parameterized split node could be used to choose dynamically between alternative paths

based on run time information and local scheduling policies. Typical attributes might

include cost, duration, and resource requirements.

All split node paths provide an optional local function attribute which is evaluated after a

path is selected. These functions can manipulate local data and may affect future path

evaluations. Path evaluations, by convention, proceed from first-specified to last-specified.



10

For both the PREDICATED and PARAMETERIZED split node, a timing attribute is

specified to indicate whether the appropriate paths should be executed in series or in

parallel. Serial execution of paths provides for a convenient shorthand to enumerate

multiple processing sequences which may be done in any order but may not be done in

parallel. Parallel execution provides explicit parallelism in the process plan.

Join Nodes

Join nodes are required to bring multiple paths back together after a split node. Each split

node has a corresponding join node and split-join pairs may be nested to an arbitrary depth.

A join node also specifies which split node is paired with it.

There are two join subclasses indicating the two ways paths can be taken from a split node.

Both join subclasses join multiple paths. A MULTIPLE join node joins paths where more

than one path was executed, while a SINGLE join node joins paths only one of which was

actually executed. These subclasses provide duplicate information to the controller. Later

versions of ALPS may drop this subclass specification requirement, but initially it was felt

that the join nodes should explicitly (and redundantly) state their class.

The SINGLE join subclass has two node subclasses: ALTERNATIVE and ITERATION.

ALTERNATIVE join nodes join paths taken from a split which selected one path from

several alternatives. The ITERATION join provides a special join for developing looping

constructs. The ITERATION join node is the only join node which precedes the

corresponding split.

Resource Nodes

Resource nodes provide for explicit specification of resource management. The subclasses

of resource nodes are: ALLOCATE and DEALLOCATE. ALLOCATE and

DEALLOCATE are complementary actions.

ALLOCATE and DEALLOCATE nodes provide a resource-locking mechanism to prevent

preemption of resources at critical times. An ALLOCATE node marks the start of this

critical section in which no allocated resources may be given up. To prevent deadlock, an

ALLOCATE node must specify all non-sharable resources required for the entire critical

section, and an allocation succeeds only if all resources are successfully allocated. A

DEALLOCATE node may specify one or more allocated resources, and multiple

deallocations may be required for a single allocate.

The existence of the ALLOCATE/DEALLOCATE nodes defines critical sections of

resource usage. Resource preemption is allowed between any two nodes not contained in a



11

critical section for that resource. This allows a controller to preempt resources in favor of

higher priority jobs and tasks.

The ALLOCATE node indicates additional information relating to the time and duration of

resource usage. This information is provided as an estimation of times for a semi-intelligent

controller. Fully intelligent controllers could obtain the same information by searching

ahead in the graph.

Synchronization Nodes

Synchronization nodes provide several means for coordinating multiple parallel tasks. The

background for this class of node is presented in (Hoare 1985)(Dijkstra 1968). There are

two basic categories of synchronization node: semaphore and clock. The semaphore

synchronization nodes are divided into subclasses of: RENDEZVOUS, SIGNAL, AWAIT,

LOCK, and UNLOCK. The clock-based synchronization nodes consist of the subclasses:

WAIT and DELAY.

SIGNAL and AWAIT synchronization nodes provide the basic means to coordinate several

parallel tasks. A SIGNAL node indicates that a specific event (semaphore) has occurred.

An AWAIT node requires execution to halt along this path at this node until the specified

event (semaphore) has been signalled. SIGNAL/AWAIT node coordination may be

between multiple paths in a single plan or between multiple paths in different plans.

Furthermore, many paths may be awaiting a single signal. A SIGNAL node defines the

signalled event by uniquely naming a semaphore. The full semaphore name consists of the

plan identifier of this SIGNAL node, the plan version number, and a unique string name.

The combination of these three ingredients provides the complete semaphore name.

AWAIT nodes specify the complete semaphore name to allow synchronization between

plans.

A RENDEZVOUS node coordinates a synchronized data transfer between two paths.

Although the SIGNAL/AWAIT nodes are sufficient to implement a rendezvous, a separate

node provides increased clarity and understanding. Upon reaching a RENDEZVOUS node,

execution along that path must stop until the corresponding RENDEZVOUS node is

reached and the data transfer completed.

The LOCK and UNLOCK provide a general purpose resource counter type of semaphore.

(LOCK is equivalent to Dijkstra’s P operation and UNLOCK is equivalent to the V

operation.) The mechanism is provided for general purpose use and may not be necessary

in all applications.



12

Timing synchronization is provided by two clock synchronization nodes: WAIT and

DELAY. The WAIT synchronization node will pause execution until a specified time

arrives. This is useful for starting tasks no sooner than a specified time. The DELAY node

allows processing to pause for no less than the specified amount of time.

Information Nodes

INFORMATION nodes provide for general purpose, user-definable operations such as

database queries, parameter bindings, computations, or other operations not covered

specifically by other nodes. The format of the user-defined expressions is application

specific; for the initial ALPS implementation a generalized LISP expression syntax was

used.

Global Plan Information

In addition to the directed graph nodes, there is information in a process plan which pertains to the

entire plan. This includes the following required attributes: plan identifier, plan version number,

and target controller. The combination of plan identifier and plan version number uniquely

identifies the plan, while the target controller indicates which controller should be executing this

particular plan. Optional and user-defined attributes which might also be included as global plan

information are: process engineer, plan status, authorization code, plan parameters, local constant

definitions, local variables, revision control information, etc.

Conceptual Schema

A powerful method of supporting the ALPS language when constructing process plans is to use a

database. The act of defining and attributing nodes of different classes consists of simply

populating this database. The database itself can assure the adherence to consistency constraints

such as precedence rules between nodes, ensuring correct data types for attributes, and referential

uniqueness. Object-oriented databases make this type of function particularly easy. In addition,

creation of a physical database from a conceptual schema is easier with an object-oriented tool than

it is with a relational database.

Our work on database support for ALPS began with the definition of the conceptual ALPS schema

of the node behavior for the ALPS language. This was done using the NIAM methodology, with

the working schema shown in the Appendix. This formal schema concisely defines the behavior of

the node classes described above. Physical databases on a variety of platforms can be

unambiguously derived from the NIAM "blueprint". It is important to note that this schema does

not address the information used during the problem-solving stage of process planning - that is

being defined in the Plan Formulation schema (see Ray 1989). Rather, the ALPS schema describes

the behavior of the nodes in the ALPS precedence graph, plus the global plan information



13

contained in the plan header. Thus, the ALPS schema is solely concerned with describing the

completed process plans and not with the information used to produce the plan.

Once the ALPS schema was defined, an object-oriented database was implemented. Classes were

defined by converting each non-lexical object in the NIAM diagram (solid circles) to a database

class definition. The object-oriented database systems used were the Statice* system, written by

Symbolics, and Gbase, by Graphael. The underlying Lisp language implementation makes the

support of object-oriented databases particularly easy, since the language itself already possesses

most of the necessary behavior.

With the database in place, any manufacturing system is able to access the plan information by

means of standard database queries. This database approach forms part of a larger architectural

design addressing the integration of manufacturing data preparation functions.

V. Conclusions

The ALPS schema facilitates communication between manufacturing control systems. It is a

general purpose vehicle for any discrete manufacturing environment. The database implementation

serves as an integrating tool, allowing convenient sharing of processing information.

The ALPS activity supports work being done in the AMRF and in the development of the PDES

process plan schema. The ALPS schema is intended to be one of several schemas necessary for

complete integration of manufacturing information, including a part definition schema, a resource

schema, and the Plan Formulation schema.

Future work will focus on refining and testing ALPS. Several aspects of ALPS are either missing

or not thoroughly defined, such as deadline management, parameter passing and necessarily

simultaneous processes. The continuing work on ALPS will address these and other unresolved

issues.

A physical file format which supports the ALPS schema has also been developed and is being used

in a prototype integrated manufacturing environment. A generic manufacturing controller is being

developed to accept ALPS data to control the manufacturing environment. Details of how ALPS

is being used to drive a controller can be found in (Newton 1990.)

* Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify
the experimental procedure. Such identification does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the
best available for the purpose.



14

VI. References

(Adler 1986) Adler, A., "TDL A Task Description Language for Programming Automated

Robotic Workcells," IEEE International Conference on Systems, Man, and

Cybernetics, 65-68, Oct 14-17, 1986.

(ANSI 1981) American National Standards Institute, "Digital Representation for

Communication of Product Definition Data," American National Standard

ANSI Y14.26M-1981, American Society of Mechanical Engineers, New York,

1981.

(Bobillier 1976) Bobillier, P.A., Kahan, B.C., and A.R. Probst, Simulation with GPSS and GPSS

V, Prentice-Hall, Englewood Cliffs, NJ,1976.

(Costa 1984) Costa, A. and M. Garetti, "Design of a Control System for a Flexible

Manufacturing Cell," Journal of Manufacturing Systems, Vol. 4, No. 1, 1984.

(Dijkstra 1968) Dijkstra, E.W., "Cooperating Sequential Processes," in Programming

Languages, ed. F. Genuys, Academic Press, New York, NY, 1968.

(Furlani 1983) Furlani, C., et al., "The Automated Manufacturing Research Facility of the

National Bureau of Standards," Proc. of the Summer Simulation Conference,

Vancouver, BC, Canada, July 11-13, 1983.

(Henghold 1989) Henghold, William M., Gerald C. Shumaker and Leonard Baker,

"Considerations for the Development and Implementation of PDES within a

Government Environment," Report AFWAL-TR-89-8009, Air Force Wright

Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, February,

1989.

(Hoare 1985) Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall,

Englewood Cliffs, NJ, 1985.

(Hocken 1983) Hocken, R. and P. Nanzetta, "Research in Automated Manufacturing at NBS,"

Manufacturing Engineering, 91, Vol. #4, 1983.

(Homem 1986) Homem de Mello, L.S. and A.C. Sanderson. "AND/OR Graph Representation

of Assembly Plans," Proc. of AAAI-86, Vol. 2, 1113-1119, Philadelphia, PA,

Aug 11-15, 1986.

(Maimon 1986) Maimon, O.Z., "A Generic Multirobot Control Experimental System," Journal

of Robotic Systems, 3(4), 451-466, 1986.

(McLean 1983) McLean, C.R., Mitchell, M., and E. Barkemeyer, "A Computing Architecture

for Small Batch Manufacturing," IEEE Spectrum, May 1983.



15

(McLean 1985) McLean, C.R., "An Architecture for Intelligent Manufacturing Control," Proc.

Summer 1985 ASME Conference, Boston, MA, August 1985.

(Nanzetta 1984) Nanzetta, P., "Update: NBS Research Facility Addresses Problems in Setups for

Small Batch Manufacturing," Industrial Engineering, June 1984.

(Newton 1990) Newton, E.C. and B.A. Catron, "Control Architectures for Manufacturing Data

Preparation," to be published as an NIST Interagency Report.

(Passler 1982) Passler, E. et al., "Production System Design: A Directed Graph Approach,"

Journal of Manufacturing Systems, Vol. 2, No. 2, 107-116.

(Pristker 1984) Pristker, A.A.B., Introduction to Simulation and SLAM II, John Wiley & Sons,

New York, NY, 1984.

(Ray 1989) Ray, S.R. "A Modular Process Planning System Architecture," Proc. of 1989

IIE Integrated Systems Conference & Society for Integrated Manufacturing

Conference, Atlanta, GA, November 1989.

(Rembold 1986) Rembold, U. and W. Epple, "Present State and Future Trends in the

Development of Programming Languages for Manufacturing," Computer-

Aided Design and Manufacturing-Methods and Tools, 1986.

(Simpson 1982) Simpson, J.A., Hocken, R.J., and J.S. Albus, "The Automated Manufacturing

Research Facility of the National Bureau of Standards," Journal of

Manufacturing Engineering, 1, Vol. #1, 1982.

(Taha 1988) Taha, H.A., " The SIMNET Simulation Language," Computers ind. Engng,

Vol. 14. No. 3, 281-295, 1988.

This paper was prepared by United States Government employees as part of their official duties

and is, therefore, a work of the U. S. Government and not subject to copyright.



16

VII. Appendix

The following statements describe the entities which appear in the diagram shown in Figure 4 at

the end of this Appendix. Each word written in uppercase letters corresponds to an entity in Figure

4. The statements, along with the listed constraints and the diagram, constitute the formal schema

definition for ALPS. It should be noted that the schema as presented is still incomplete. All of the

node subclasses without associated relations will eventually be defined with attributes specific to

each subclass. For now, all such attributes are handled by the generic entity ATTRIBUTE, which

is inherited by all nodes. Statements are numbered for ease of referencing.

01) A PLAN is made of one or more NODES.

02) A PLAN has a unique PLAN ID.

03) A PLAN has a single HIERARCHY LEVEL.

04) A PLAN has a single VERSION.

05) A PLAN has a single TARGET.

06) A PLAN is referred to by zero, one or many DECOMPOSABLE TASK NODES.

07) A NODE has a single NODE NUMBER.

08) A NODE has a single NODE TYPE.

09) A NODE has a single NODE NAME.

010) A NODE belongs to a single PLAN.

011) A NODE is uniquely defined by its NODE NUMBER and the PLAN it belongs to.

012) A NODE contains zero, one or many ATTRIBUTES.

013) An ATTRIBUTE qualifies a single NODE.

014) An ATTRIBUTE has a single ATTRIBUTE NAME.

015) An ATTRIBUTE has a single ATTRIBUTE VALUE.

016) A NODE is either a SINGLE PREDECESSOR NODE, a SINGLE SUCCESSOR NODE, or

both.

017) A SINGLE PREDECESSOR NODE is preceded by zero or one NODES.

018) A SINGLE SUCCESSOR NODE is succeeded by zero or one NODES.

019) A SINGLE PREDECESSOR NODE is either a SPLIT NODE or a NON-BRANCHING

NODE, but not both.

020) A SPLIT NODE is succeeded by more than one SINGLE PREDECESSOR NODE.



17

021) A SINGLE SUCCESSOR NODE is either a JOIN NODE or a NON-BRANCHING NODE,

but not both.

022) A JOIN NODE is preceded by more than one SINGLE SUCCESSOR NODE.

023) A NON-BRANCHING NODE is a subclass of SINGLE SUCCESSOR NODE and a subclass

of SINGLE PREDECESSOR NODE.

024) A SPLIT NODE is either a PARAMETERIZED SPLIT NODE or a PREDICATED SPLIT

NODE, but not both.

025) A JOIN NODE is either a MULTIPLE JOIN NODE or a SINGLE JOIN NODE, but not both.

026) A SINGLE JOIN NODE is either an ITERATION SINGLE JOIN NODE or an

ALTERNATIVE SINGLE JOIN NODE, but not both.

027) A NON-BRANCHING NODE is either a RESOURCE NODE, TERMINATION NODE,

TASK NODE, INFORMATION NODE or a SYNCHRONIZATION NODE, but not more

than one of them.

028) A RESOURCE NODE is either an ALLOCATE RESOURCE NODE or a DEALLOCATE

RESOURCE NODE, but not both.

029) A TERMINATION NODE is either a START TERMINATION NODE or an END

TERMINATION NODE, but not both.

030) A SYNCHRONIZATION NODE is either a RENDEZVOUS, LOCK, UNLOCK, SIGNAL,

AWAIT, DELAY or TIMED WAIT SYNCHRONIZATION NODE, but not more than one

of them.

031) A TASK NODE is either a DECOMPOSABLE TASK NODE or a PRIMITIVE TASK

NODE, but not both.

032) A DECOMPOSABLE TASK NODE is either a COMPLEX DECOMPOSABLE or MACRO

DECOMPOSABLE TASK NODE, but not both.

033) A DECOMPOSABLE TASK NODE refers to a single PLAN ID.

034) A DECOMPOSABLE TASK NODE refers to zero or one plan VERSION.

Notes and Constraints:

01) Only the leaves of the node taxonomy are ever instantiated. In other words, the only classes

to contain actual data will be those which have no subclasses. For example, one would never

have an instance of a NON-BRANCHING NODE, but one might have an instance of a

START TERMINATION NODE, which inherits properties from NON-BRANCHING

NODE.



18

02) The inverse relations of "succeeded by" and "preceded by" are never used in the

implementation, as this would cause ambiguity in the schema.

03) Every SPLIT NODE must have a corresponding JOIN NODE belonging to the same PLAN.

04) Every ITERATION SINGLE JOIN NODE must occur earlier in a PLAN than its

corresponding SPLIT NODE. That is, the ITERATION SINGLE JOIN NODE must be a

predecessor (but not an immediate predecessor) of its corresponding SPLIT NODE.

05) Every other subclass of JOIN NODE must occur later in a PLAN than its corresponding

SPLIT NODE.

06) A JOIN NODE must correspond to the nearest predecessor SPLIT NODE belonging to the

same PLAN. That is, strict recursion is enforced - a JOIN NODE "closes up" the latest SPLIT

NODE, not some earlier one.



19

Figure 4
NIAM diagram of the ALPS schema. This diagram, together with the statements and
constraints appearing in this Appendix constitute the complete ALPS schema
definition.

Plan
Id

with of

Hierarchy
Level

with of

Node
Number

with of

Node
Type

of type of

made of
belongs to

Non-
branching

node

Single
Predecessor

Node

Single
Successor

Node

Join
Node

Split
Node

Resource Termination Task Information
Synchroni

zation

Decompos
able

Primitive

MacroComplex

Rendezvous Delay
Timed
Wait

Signal /
Await

Lock /
Unlock

End

Single

Multiple

Alternative

Iteration

Predicated
Parameteri

zed

Node

Attribute

successor of
succeeded by

Attribute
Name

Attribute
Value

Plan

qualifies
contains

with
of

with
of

Start

predecessor of
preceded by

successor of
succeeded by

predecessor of
preceded by

Node
Name

named of

Versionwith ofTarget of with

Plan
Id

referred by refers to

Version referred by refers to

DeallocateAllocate


